Find a Random images for your creative needs, desktop wallpaper or Android device. In probability theory and statistics, the Bernoulli distribution, named after Swiss scientist Jacob Bernoulli, is the probability distribution of a random variable which takes the value 1 with probability
p
{\displaystyle p}
and the value 0 with probability
q
=
1
−
p
{\displaystyle q=1-p}
— i.e., the probability distribution of any single experiment that asks a yes–no question; the question results in a boolean-valued outcome, a single bit of information whose value is success/yes/true/one with probability p and failure/no/false/zero with probability q. It can be used to represent a coin toss where 1 and 0 would represent "head" and "tail" (or vice versa), respectively. In particular, unfair coins would have
p
≠
0.5
{\displaystyle p\neq 0.5}
.
The Bernoulli distribution is a special case of the binomial distribution where a single experiment/trial is conducted (n=1). It is also a special case of the two-point distribution, for which the outcome need not be a bit, i.e., the two possible outcomes need not be 0 and 1.Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks, that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. Random decision forests correct for decision trees' habit of overfitting to their training set.
The first algorithm for random decision forests was created by Tin Kam Ho using the random subspace method, which, in Ho's formulation, is a way to implement the "stochastic discrimination" approach to classification proposed by Eugene Kleinberg.
An extension of the algorithm was developed by Leo Breiman and Adele Cutler, and "Random Forests" is their tradema ...

Discover now our large variety of topics and our best pictures: